2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  原文:</b></p><p>  Stress-Strain Relationships and Behavior</p><p>  5.1 INRODUCTION</p><p>  5.2 MODELS FOR DEFORMATION BEHAVIOR</p><p>  5.3 E

2、LASTIC DEFORMATION</p><p>  5.4 ANISOTROPIC MATERIALS</p><p>  5.5 SUMMARY</p><p>  OBJECTIVES</p><p>  Become familiar with the elastic, plastic, steady creep, and tra

3、nsient creep types of strain, as well as simple rheological models for representing the stress-strain-time behavior for each.</p><p>  Explore three-dimensional stress-strain relationships for linear-elastic

4、 deformation in isotropic materials, analyzing the interdependence of stresses or strains imposed in more than one direction.</p><p>  Extend the knowledge of elastic behavior to basic cases of anisotropy, i

5、ncluding sheets of matrix-and –fiber composite material.</p><p>  5.1 INRODUCTION</p><p>  The three major types of deformation that occur in engineering materials are elastic, plastic, and cree

6、p deformation. These have already been discussed in Chapter 2 from the viewpoint of physical mechanisms and general trends in behavior for metals, polymers, and ceramics. Recall that elastic deformation is associated wit

7、h the stretching, but not breaking, of chemical bonds. In contrast, the two types of inelastic deformation involve processes where atoms change their relative positions, such as</p><p>  In engineering desig

8、n and analysis, equations describing stress-strain behavior, called stress-strain relationships, or constitutive equations, are frequently needed. For example, in elementary mechanics of materials, elastic behavior with

9、a linear stress-strain relationship is assumed and used in calculating stresses and deflections in simple components such as beams and shafts. More complex situations of geometry and loading can be analyzed by employing

10、the same basic assumptions in the form o</p><p>  Stress-strain relationships need to consider behavior in three dimensions. In addition to elastic strains, the equations may also need to include plastic str

11、ains and creep strains. Treatment of creep strain requires the introduction of time as an additional variable. Regardless of the method used, analysis to determine stresses and deflections always requires appropriate str

12、ess-strain relationships for the particular material involved.</p><p>  For calculations involving stress and strain, we express strain as a dimensionless quantity, as derived from length change, ε=ΔL/L. Hen

13、ce, strains given as percentages need to be converted to the dimensionless form, ε=ε%/100, as do strains given as microstrain, ε=εμ/106.</p><p>  In the chapter, we will first consider one-dimensional stress

14、-strain behavior and some corresponding simple physical models for elastic, plastic, and creep deformation. The discussion of elastic deformation will then be extended to three dimensions, starting with isotropic behavio

15、r, where the elastic properties are the same in all directions. We will also consider simple cases of anisotropy, where the elastic properties vary with direction, as in composite materials. However, discussion of three&

16、lt;/p><p>  5.2 MODELS FOR DEFORMATION BEHAVIOR</p><p>  Simple mechanical devices, such as linear springs, frictional sliders, and viscous dashpots, can be used as an aid to understanding the vari

17、ous types of deformation. Four such models and their responses to an applied force are illustrated in Fig.5.1. Such devices and combinations of them are called rheological models.</p><p>  Elastic deformatio

18、n, Fig.5.1(a), is similar to the behavior of a simple linear spring characterized by its constant k. The deformation is always proportional to force, x=P/k, and it is recovered instantly upon unloading. Plastic deformati

19、on, Fig.5.1(b), is similar to the movement of a block of mass m on a horizontal plane. The static and kinetic coefficients of friction μ are assumed to be equal, so that there is a critical force for motion P0=μmg, where

20、 g is the acceleration of gravity. If a co</p><p>  a =(P’-P0)/m (5.1)</p><p>  When the force is removed at time t, the block has moved a distance a=at2/2, and it remai

21、ns at this new location. Hence, the model behavior produces a permanent deformation, xp.</p><p>  Creep deformation can be subdivided into two types. Steady-state creep, Fig.5.1(c), proceeds at a constant ra

22、te under constant force. Such behavior occurs in a linear dashpot, which is an element where the velocity, , is proportional to the force. The constant of proportionality is the dashpot constant c, so that a constant val

23、ue of force P’ gives a constant velocity, , resulting in a linear displacement versus time behavior. When the force is removed, the motion stops, so that the deformation i</p><p>  The second type of creep,

24、is called transient creep, Fig.5.1(d), slows down as time passes. Such behavior occurs in a spring mounted parallel to a dashpot. If a constant force P’ is applied, the deformation increases with time. But an increasing

25、fraction of the applied force is needed to pull against the spring as x increases, so that less force is available to the dashpot, and the rate of deformation decreases. The deformation approaches the value P’/k if the f

26、orce is maintained for a long peri</p><p>  Rheological models may be used to represent stress and strain in a bar of material under axial loading, as shown in Fig. 5.2. The model constants are related to ma

27、terial constants that are independent of the bar length L or area A. For elastic deformation, the constant of proportionality between stress and strain is the elastic modulus, also called Young’s modulus, given by </p

28、><p>  E=σ/ε (5.2)</p><p>  Substituting the definitions of stress and strain, and also employing P = k x, yields the relationship between E and k:</p><p> 

29、 E=kL/A (5.3)</p><p>  For the plastic deformation model, the yield strength of the material is simply </p><p>  σ0=P0/A (5.4)</p><p&g

30、t;  For the steady-state creep model, the material constant analogous to the dashpot constant c is called the coefficient of tensile viscosity1 and is given by</p><p><b>  (5.5)</b></p>&l

31、t;p>  Where is the strain rate. Substitution from Fig. 5.2 and P= cx. Yields the relationship between η and c:</p><p><b>  (5.6)</b></p><p>  Equations 5.3 and 5.6 also apply to

32、the spring and dashpot elements in the transient creep model. </p><p>  Before proceeding to the detailed discussion of elastic deformation, it is useful to further to discuss plastic and creep deformation m

33、odels.</p><p>  5.2.1 Plastic Deformation Models</p><p>  As discussed in Chapter 2, the principal physical mechanism causing plastic deformation in metals and ceramics is sliding (slip) between

34、 planes of atoms in the crystal grains of the material, occurring in an incremental manner due to dislocation motion. The material’s resistance to plastic deformation is roughly analogous to the friction of a block on a

35、plane, as in the rheological model of Fig. 5.1(b).</p><p>  For modeling stress-strain behavior, the block of mass m can be replaced by a massless frictional slider, which is similar to a spring clip, as sho

36、wn in Fig. 5.3(a). Tow additional models, which are combinations of linear springs and frictional sliders, are shown in (b) and (c). These give improved representation of the behavior of real materials, by including a sp

37、ring in series with the slider, so that they exhibit elastic behavior prior to yielding at the slider yield strength σo. In addition,</p><p>  Figure 5.3 gives each model’s response to three different strain

38、 inputs. The first of these is simple monotonic straining—that is, straining in a single direction. For this situation, for models (a) and (b), the stress remains at σo beyond yielding.</p><p>  For monotoni

39、c loading of model (c), the strain ε is the sum of strainε1 in spring E1 and strainε2 in the (E2, σo) parallel combination:</p><p>  , (5.7)</p><p>  The vertical bar is ass

40、umed not to rotate, so that both spring E2 and sliderσo have the same strain. Prior to yielding, the slider prevents motion, so that strainε2 is zero:</p><p>  ,(σσo) (5.8)</p><p

41、>  Since there is no deflection in spring E2, its stress is zero, and all of the stress is carried by the slider. Beyond yielding, the slider has a constant stressσo, so that the stress in spring E2 is (σ-σo). Hence,

42、the strainε2 and the overall strainε are</p><p>  , (5.9)</p><p>  From the second equation,the slope of the stress-strain curain curve is seen to be </p><p><b>

43、  (5.10)</b></p><p>  Which is the equivalent stiffness Ee, lower than both E1 and E2, corresponding to E1 and E2 in series.</p><p>  Figure 5.3 also gives the model responses where strain

44、 is increased beyond yielding and then decreased to zero. In all three cases, there is no additional motion in the slider until the stress has changed by an amount 2σ0 in the negative direction . For models (b) and (c) ,

45、 this gives an elastic unloading of same slope E1 as the initial loading. Consider the point during unloading where the stress passes through zero, as shown in Fig. 5.4. The elastic strain, εe, that is recovered correspo

46、nds to</p><p>  Now consider the response of each model to the situation of the last column in Fig. 5.3, where the model is reloaded after elastic unloading to σ = 0. In all cases, yielding occurs a second t

47、ime when the strain again reaches the value ε1 from which unloading occurred. It is obvious that the two perfectly plastic models will again yield at σ = σ0. But the linear-hardening model now yields at a value σ = σ1, w

48、hich is higher than the initial yield stress. Furthermore, σ1 is the same value of stress</p><p>  We will return to spring and slider models of plastic deformation in Chapter 12, where they will be consider

49、ed in more detail and extended to nonlinear hardening cases.</p><p><b>  譯文:</b></p><p>  應(yīng)力應(yīng)變的關(guān)系和行為</p><p><b>  5.1 概述</b></p><p>  5.2 變形的典型模式

50、</p><p><b>  5.3 彈性變形</b></p><p>  5.4 各向異性材料</p><p><b>  5.5總結(jié)</b></p><p><b>  目標(biāo)</b></p><p>  熟悉彈性應(yīng)變,塑性應(yīng)變,穩(wěn)態(tài)蠕變和瞬態(tài)蠕變等應(yīng)

51、變類型,以及每個(gè)用來表示應(yīng)力——應(yīng)變與時(shí)間相關(guān)的簡單的流變類型。</p><p>  探討在各向同性材料中線性彈性變形的三維的應(yīng)力應(yīng)變關(guān)系,分析應(yīng)力應(yīng)變在多個(gè)方向上施加的相互作用力</p><p>  擴(kuò)展在各向異性材料中以及一些基體纖維復(fù)合材料中彈性形變的基本情況的知識。</p><p><b>  5.1概述</b></p>

52、<p>  工程材料發(fā)生變形的三種主要類型是彈性變形,塑性變形,蠕變變形。這些已經(jīng)在金屬聚合物和陶瓷行為的物理機(jī)制和一般趨勢的觀點(diǎn)的第2章中被討論過了,記得彈性變形與拉伸相關(guān),但是不打破化學(xué)鍵。相比之下,這兩種涉及原子的相對位置變化的過程類型的非彈性變形,比如晶面滑移和鏈分子滑動。如果非彈性變形取決于時(shí)間,它被歸類為蠕變,區(qū)別于不取決于時(shí)間的的塑性變形。</p><p>  在工程設(shè)計(jì)和分析中,應(yīng)力應(yīng)變

53、行為的方程描述,稱為應(yīng)力應(yīng)變的關(guān)系或本構(gòu)方程是很必要的。比如,在基礎(chǔ)材料力學(xué)中,與線性應(yīng)力-應(yīng)變相關(guān)的彈性行為是被假定和用來計(jì)算簡單的構(gòu)件如梁和軸的應(yīng)力和變形的。在更復(fù)雜的幾何和加載情況下,可以由彈性理論的形式使用相同的基本假設(shè)分析?,F(xiàn)在經(jīng)常利用被稱為與數(shù)字計(jì)算機(jī)相關(guān)的有限元分析的數(shù)字科技來完成。</p><p>  應(yīng)力應(yīng)變關(guān)系需要考慮在三維中的行為,除了彈性應(yīng)變外,這個(gè)方程可能還需要包括塑性應(yīng)變和蠕變應(yīng)變。處

54、理蠕變應(yīng)變要引入時(shí)間作為一個(gè)額外的變量。不管用什么方法,對于特定的材料分析確定應(yīng)力和變形總是需要適當(dāng)?shù)膽?yīng)力-應(yīng)變關(guān)系。對于應(yīng)力和應(yīng)變的計(jì)算,我們把應(yīng)變作為一個(gè)無量綱的量表達(dá),來自于長度的變化,ε=ΔL/L。因此,應(yīng)變給定的百分比需要被轉(zhuǎn)換成無量綱形式,ε=ε%/100,也可以把應(yīng)變百分比做為微應(yīng)變ε=εμ/106。</p><p>  在本章中,我們將首先考慮一維應(yīng)力應(yīng)變行為和一些相應(yīng)的彈性,塑性,蠕變變形的簡單

55、的物理模型。彈性變形的探討將擴(kuò)展到三個(gè)維度,從各向同性行為開始,在所有的方向中的彈性性質(zhì)是相同的。我們也會考慮在復(fù)合材料中各向異性的簡單情況,其中的彈性性質(zhì)隨方向而變化。但是,三維塑性變形和蠕變變形行為探討將分別推遲到第12章和15章。</p><p>  5.2變形的典型模式</p><p>  簡單的機(jī)械裝置,如線性彈簧、摩擦滑塊和粘滯阻尼器,可以用于幫助理解變形的各種類型。四個(gè)這樣的

56、模型對于一個(gè)施加力的反應(yīng)展示在圖5.1。這樣的裝置和它們的組合被稱為流變模型。</p><p>  彈性變形,圖.5.1(a),類似于一個(gè)簡單的線性彈簧的行為,用常數(shù)K表示,這種變形都是成比例的力,x=P/k,,并且當(dāng)它的力卸載時(shí)變形會恢復(fù)。塑性變形,圖5.1(b),類似于一個(gè)質(zhì)量為m的塊在一個(gè)水平面上的運(yùn)動,動、靜摩擦系數(shù)被認(rèn)為是相等的,所以有一個(gè)臨界動摩擦力P0=μmg,其中g(shù)是重力加速度。如果施加一個(gè)恒定的

57、力P小于臨界值,P’<P0,沒有運(yùn)動的發(fā)生。但是,如果這個(gè)力再大點(diǎn),P’>P0,這個(gè)塊做加速度運(yùn)動,</p><p>  a =(P’-P0)/m (5.1)</p><p>  當(dāng)這個(gè)力作用時(shí)間為t,這個(gè)塊移動的距離a= at2/2,它仍然是在這個(gè)新的位置。因此,該類型的行為產(chǎn)生永久變形,Xp。蠕變變形可分為兩種類型,穩(wěn)態(tài)蠕變,圖5.1(

58、c),在恒力作用下進(jìn)行恒速運(yùn)動,這種行為發(fā)生在一個(gè)線性阻尼情況下,一個(gè)恒定的速度單元,與力成正比。比例常數(shù)是阻尼常數(shù)C,因此,一個(gè)恒定的力P’值給出了一個(gè)恒定的速度,,導(dǎo)致了一個(gè)線性位移與時(shí)間的關(guān)系。當(dāng)這個(gè)力撤去時(shí),運(yùn)動停止,所以這個(gè)變形是永久性的,不可恢復(fù)的。一個(gè)阻尼器可以通過將一個(gè)活塞放在一個(gè)充滿粘性液體(如重油)的圓筒中構(gòu)造出來,當(dāng)施加一個(gè)力時(shí),少量的油漏過活塞,使活塞移動。運(yùn)動的速度將與力的大小近似成比例,當(dāng)所有的力撤去時(shí)位移將

59、會保持。</p><p>  第二種蠕變類型,被稱為瞬態(tài)蠕變,圖5.1(d),隨著時(shí)間的推移減慢。這樣的情況是發(fā)生在一個(gè)裝有平行的阻尼和彈簧上,如果有一個(gè)恒定的力P作用,變形會隨時(shí)間增加。但隨著x的增加需要越來越多的一部分施加的力來拉彈簧,因此,這些小部分的力可以通過阻尼器獲得,并且變形速率降低。如果力是維持很長一段時(shí)間變形值近似于p / k,如果施加的力撤去,已經(jīng)被延伸的彈簧,現(xiàn)在拉回阻尼器。這導(dǎo)致所有的變形是

60、在極長的時(shí)間恢復(fù)。</p><p>  流變模型可以用來表示軸向載荷下一塊材料的應(yīng)力和應(yīng)變,如圖5.2所示,該模型常數(shù)與材料常數(shù)有關(guān),與材料的長度或面積無關(guān)。對彈性形變來說,應(yīng)力應(yīng)變之間的常數(shù)是彈性模量,也稱為楊氏模量,由E=σ/ε (5.2) 得出,用應(yīng)力和應(yīng)變的定義,并采用P = K X,可得出E和K之間的關(guān)系 </p><p>  E=k L/A

61、 (5.3)</p><p>  對于塑性變形模型,材料的屈服強(qiáng)度很簡單,</p><p>  σ0=P0/A (5.4)</p><p>  對于穩(wěn)態(tài)蠕變模型,類似于阻尼常數(shù)C的材料常數(shù)稱為拉伸粘度系數(shù),由下式得出</p><p><b>  (5.5)<

62、/b></p><p>  當(dāng)應(yīng)變速率由得出時(shí),從圖5.2和P = CX替代,可得出η和C之間的關(guān)系</p><p><b>  (5.6)</b></p><p>  在瞬態(tài)蠕變模型中,方程5.3和5.6也適用于彈簧和阻尼器的元素。</p><p>  在詳細(xì)討論彈性形變之前,對于進(jìn)一步討論塑性和蠕變變形的模型也

63、是有用的。</p><p>  5.2.1塑性變形模型</p><p>  如同在2章中討論的,在金屬和陶瓷中產(chǎn)生塑性變形的主要的物理機(jī)制是材料晶粒和原子平面的滑移(滑動),由于位錯(cuò)運(yùn)動以漸進(jìn)的方式發(fā)生。材料的塑性變形大致類似于一個(gè)塊在平面上的摩擦,如同圖5.1(b)的流變模型。</p><p>  為了建立應(yīng)力應(yīng)變模型,質(zhì)量為m的塊可以用一個(gè)無質(zhì)量的摩擦滑塊替代,

64、類似于一個(gè)彈簧夾,如圖5.3(a)所示。兩個(gè)額外的模型,即線性彈簧和摩擦滑塊組合,如圖(b)和(c)。通過滑塊與彈簧相連,使實(shí)際材料的行為描述得到了改善,所以,他們用屈服強(qiáng)度σo表現(xiàn)滑塊的彈性屈服。另外,模型(C)有第二個(gè)線性彈簧與滑塊并聯(lián),所以它的阻力隨著變形增大而增加。模型(a)是剛性的,完全的塑性變形,模型(b)有彈性,是完全的塑性變形,模型(c)也有彈性,是線性硬化變形。</p><p>  圖5.3給出

65、了三種不同的應(yīng)變輸入時(shí)每個(gè)模型的響應(yīng),第一個(gè)是簡單的單調(diào)的應(yīng)變,是一個(gè)單方向的應(yīng)變。在這種情況下,對于模型(a)和(b)來說,應(yīng)力保持在σo 并不超過。</p><p>  對于單調(diào)加載的模型(c),總應(yīng)變ε是彈簧E1的應(yīng)變ε1與E2和σo并聯(lián)應(yīng)變ε2 的和。</p><p><b>  (5.7)</b></p><p>  垂直桿不轉(zhuǎn)動,所

66、以,彈簧E2和滑塊σo有相同的應(yīng)變。在屈服之前,滑塊阻止運(yùn)動,所以ε2是0。</p><p>  (σσo) (5.8)</p><p>  既然有彈簧E2無偏轉(zhuǎn),其應(yīng)力為零,所有的應(yīng)力是由滑塊產(chǎn)生。除了屈服,滑塊具有一個(gè)恒定應(yīng)力σo ,所以,彈簧E2的應(yīng)力為(σ-σo),因此,應(yīng)變ε2和總應(yīng)變ε是</p><p><b>  (5.9)&l

67、t;/b></p><p>  從第二個(gè)方程,應(yīng)力-應(yīng)變曲線斜率被看作是</p><p><b>  (5.10)</b></p><p>  是等效剛度Ee,小于E1、E2,相當(dāng)于E1E2并聯(lián)。</p><p>  圖5.3也給出了應(yīng)變增加超過屈服極限后下降到零模型的響應(yīng),在所有的三種情況中,滑塊沒有額外的運(yùn)動直

68、到應(yīng)力變成負(fù)方向的2σ0 。對于模型(b)和(c),給出了一個(gè)相同斜率的彈性卸載E1作為初始加載??紤]在卸載過程中的應(yīng)力通過零點(diǎn),如圖5.4。彈性應(yīng)變,εe,,對應(yīng)于彈簧E1的松弛而恢復(fù)。永久性或塑性應(yīng)變εP對應(yīng)滑塊滑動到最高點(diǎn)的最大應(yīng)變,實(shí)際的材料一般具有非線性硬化的應(yīng)力-應(yīng)變曲線如圖(C),但隨著彈性卸載類似于流變模型。</p><p>  現(xiàn)在考慮各模型在圖5.3中的最后一列的情況下的響應(yīng),模型的彈性卸載至

69、0后重新加載。在所有的情況中,當(dāng)卸載時(shí)應(yīng)變值達(dá)到ε1,屈服再次發(fā)生。很明顯這兩個(gè)完全的塑性變形在σ = σ0時(shí)會再次發(fā)生。但線性硬化模型現(xiàn)在的屈服值σ = σ1,高于初始屈服應(yīng)力值。而且,當(dāng)卸載第一次開始時(shí),σ1與應(yīng)力ε=ε1的值相同。在所有的3個(gè)模型中,可以這樣解釋,模型具有記憶先前的卸載點(diǎn)的能力。特別地,卸載發(fā)生時(shí),屈服在同一點(diǎn)σ-ε再次發(fā)生,并且隨后的反應(yīng)與沒有卸載時(shí)相同。真實(shí)材料的塑性變形表現(xiàn)出類似的記憶效應(yīng)。</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論