版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、華中科技大學碩士學位論文高階Schrodinger方程的Strichartz估計姓名:李炫申請學位級別:碩士專業(yè):應用數(shù)學指導教師:鄭權20090515AbstractSince the 1920s, theory of Schr¨ odinger operators has constantly been a central studied sub-ject of modern mathematics and physics
2、. Moreover, Lp ? Lq estimates, Strichartz time-spaceestimates, local smoothing estimates, weighted estimates, weak global smoothing estimates andmaximal operator’s estimates of Schr¨ odinger equations have been an i
3、mportant topic in the recenttwenty years, because the investigation of this topic has abundant applied backgrounds as wellas very strong theoretic meaning. The study of higher-order Schr¨ odinger operator P(D) + Vwh
4、ich is the generalization of Schr¨ odinger operator ?? + V not only can enrich its contents butalso deepen its understanding. The main purpose of this thesis is to study Strichartz estimatesof higher-order Schr¨
5、; odinger equations with a time-depended potential in the case that P is a realhomogeneous elliptic polynomial. Compared with past relating works, the most important featureof this paper is to deal with the case that P i
6、s a higher-order operator.This thesis consists of two parts: in the first part, backgrounds and recent results of Strichartzestimates of Schr¨ odinger equation are presented, and so are the other related results; in
7、 thesecond part, it proves that the strichartz estimates of the higher-order Schr¨ odinger equation witha time-depended potential V (t, x) ∈ Lr tLs x hold in the case that it gives. Firstly it gives thebackgrounds a
8、nd recently results of the problem, and then it gives my result of the problem. Theresult contains two parts: the first one is about r ∈ [1, ∞), and the problem is studied by usingH¨ older estimates and the contract
9、ion mapping principle; the second one is about r = ∞, and theproblem is studied by using the method of fixing time and community of the potential to the time.Key words:Schr¨ odinger equation, time-depended potential
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高階Schrodinger方程的時空估計.pdf
- 非對稱波動方程的Strichartz估計.pdf
- 振蕩積分和高階Schrodinger方程的兩個問題.pdf
- Strichartz估計與非線性波動方程的適定性問題.pdf
- Schrodinger方程辛和多辛Fourier擬譜方法誤差估計.pdf
- 發(fā)展方程高階差分方法的誤差估計.pdf
- 高階奇異微分算子虧指數(shù)與一類方程適定性的關系Schrodinger算子第一特征值下界的估計.pdf
- Schrodinger方程的數(shù)值解法.pdf
- 一類高階Schr_dinger方程的下界估計.pdf
- 帶調(diào)和勢的非線性Schrodinger方程.pdf
- 解Schrodinger方程和Burgers方程的緊差分格式.pdf
- 桿振動方程的辛格式及非線性Schrodinger方程的守恒格式.pdf
- 非線性Schrodinger方程的高精度守恒數(shù)值格式.pdf
- 具有非退化變系數(shù)Schrodinger方程的研究.pdf
- 非線性Schrodinger方程幾個守恒差分格式.pdf
- 一類Schrodinger方程整體解的存在性.pdf
- 一類Schrodinger方程的適定性問題.pdf
- 非橢圓非線性Schrodinger方程整體解.pdf
- 非線性Schrodinger方程的高精度守恒差分格式.pdf
- 耦合非線性Schrodinger方程組的初值問題.pdf
評論
0/150
提交評論